Chromosomal directionality of DNA mismatch repair in Escherichia coli.

نویسندگان

  • A M Mahedi Hasan
  • David R F Leach
چکیده

Defects in DNA mismatch repair (MMR) result in elevated mutagenesis and in cancer predisposition. This disease burden arises because MMR is required to correct errors made in the copying of DNA. MMR is bidirectional at the level of DNA strand polarity as it operates equally well in the 5' to 3' and the 3' to 5' directions. However, the directionality of MMR with respect to the chromosome, which comprises parental DNA strands of opposite polarity, has been unknown. Here, we show that MMR in Escherichia coli is unidirectional with respect to the chromosome. Our data demonstrate that, following the recognition of a 3-bp insertion-deletion loop mismatch, the MMR machinery searches for the first hemimethylated GATC site located on its origin-distal side, toward the replication fork, and that resection then proceeds back toward the mismatch and away from the replication fork. This study provides support for a tight coupling between MMR and DNA replication.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Control of large chromosomal duplications in Escherichia coli by the mismatch repair system.

Excessive recombination between repeated, interspersed, and diverged DNA sequences is a potential source of genomic instability. We have investigated the possibility that a mechanism exists to suppress genetic exchange between these quasi-homologous (homeologous) sequences. We examined the role of the general mismatch repair system of Escherichia coli because previous work has shown that the mi...

متن کامل

Escherichia coli Frameshift Mutation Rate Depends on the Chromosomal Context but Not on the GATC Content Near the Mutation Site

Different studies have suggested that mutation rate varies at different positions in the genome. In this work we analyzed if the chromosomal context and/or the presence of GATC sites can affect the frameshift mutation rate in the Escherichia coli genome. We show that in a mismatch repair deficient background, a condition where the mutation rate reflects the fidelity of the DNA polymerization pr...

متن کامل

Role of Escherichia coli DNA polymerase IV in in vivo replication fidelity.

We have investigated whether DNA polymerase IV (Pol IV; the dinB gene product) contributes to the error rate of chromosomal DNA replication in Escherichia coli. We compared mutation frequencies in mismatch repair-defective strains that were either dinB positive or dinB deficient, using a series of mutational markers, including lac targets in both orientations on the chromosome. Virtually no con...

متن کامل

d(GATC) sequences influence Escherichia coli mismatch repair in a distance-dependent manner from positions both upstream and downstream of the mismatch.

The role of d(GATC) sites in determining the efficiency of methyl-directed mismatch repair in Escherichia coli was investigated. Transfection of host bacteria, both proficient and deficient in mismatch repair, with a series of artificially constructed M13 heteroduplexes showed that a decrease in the total number of d(GATC) sequences within these vectors lowered the efficiency of repair in vivo....

متن کامل

A ‘Semi-Protected Oligonucleotide Recombination’ Assay for DNA Mismatch Repair in vivo Suggests Different Modes of Repair for Lagging Strand Mismatches

In Escherichia coli, a DNA mismatch repair (MMR) pathway corrects errors that occur during DNA replication by coordinating the excision and re-synthesis of a long tract of the newly-replicated DNA between an epigenetic signal (a hemi-methylated d(GATC) site or a single-stranded nick) and the replication error after the error is identified by protein MutS. Recent observations suggest that this '...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 112 30  شماره 

صفحات  -

تاریخ انتشار 2015